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Coulomb logarithm in femtosecond-lasermatter interaction
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In femtosecond-laser—matter interaction, collisional absorption plays an important role during the early
stages of the interaction, when the laser intensity and the plasma temperature still have moderate values. We
propose a cutoff impact parametey,,, for the Coulomb logarithmx =In A in the electron-ion collision rate
which takes into account, for an overdense plasma, the crystalline structure of the ion background. Calculations
are presented for a bcc lattice and generalized to sc and fcc lattices. The results are applicable for laser
intensitiesl, <10 W cm 2 and when the Debye theory is valid, that is to say, when the Landau length is
distinctly less than the minimum ion distance, and when the Debye screening is unaffected by the electron
quiver motion in the laser field. We present the space angle dependence of thebgui@$ also its spatial
average, and we discuss the ensuing corrections to the Coulomb logarithm due to the improved Vglyes of
Finally, we present the pertinefh) values, averaged over a Maxwellian distribution function, which are
needed for applications of the ballistic model for collisiof$1063-651%99)05108-9

PACS numbse(s): 52.40.Nk, 52.20.Fs, 52.20j

When an intense femtosecond laser pulse impinges soligh b, only; the termb, enters into Eq.1) in order to
matter, collisional absorption in the generated overdensgimplify notation. The bare Coulomb potential approxima-
plasma , >, Wherew is the laser frequency and, .  tion is valid here since we investigate impact parameters
the plasma frequengyplays an important role during the shorter than or close to the Debye length. Some more precise
early stages of the interaction, i.e., as long as the local laséormulas are given if5] to take into account the Debye
intensityl, and the electron temperatukgT, still have mod-  screening, but for one ion only—not for an ion lattice.
erate values. For a laser wavelengil 0.815um, intensity The rough formula, Eq(l), could be replaced by a more
1, <10Wcm 2, electron temperaturkgT,<300 eV, and detailed one,
density na~5x10?%cm™3, the electron-ion collision fre-

quency is of the order of 18s™ 1. 1 [1+b2 /b2
The most complete theory describing electron-ion interac- No(V)= §|n m
tion in solid matter is the dielectric mod&ee, for instance, minl D1
[1-3]). For practical purposes, it has, however, appeared
. ) . 1 1 1
more convenient to use simpler models based on the ballistic +_< — ) , 2)
collision theory. This approach has been recently revisited by 2\ 1+b2, /0% 1+b%,/b?

Mulser et al. [4], who provide for laser-matter interaction a _ _
time-dependent collision frequency, which in fact representgvhich takes into account the energy conservation of the elec-

the collisional energy absorption rate. tron colliding elastically with a much heavier fixed i9@].
In the following, we denote by b, (v) One can also find in the literatufsee, e.g.[7,8]) another

=7 €/4m sy m, V2 the impact parameter corresponding to aapproximate formula fork =InA=In(bma/bo), where by

90° deflection, where is the colliding electron velocityz ~ =MaxQg, b, ). This can be derived from E@1) in the limit

the ion charge numbeg, the vacuum permittivitye the  Pmaby @ if Ag>b,, we geth;(v)~In(bna/Ng); if A
elementary electric charge, ama, the electron mass. The <b., we geth;(v)~In(bya/b, ).

cutoff by, is the maximum interaction distance correspond- Whenby,, is less tharby,,, there is no interaction and
ing to the minimum meaningful deviation anglg,,, and the collision frequency vanishes. Fbg,,<b, , meaning
bmin(v) the minimum interaction distance corresponding tothat trajectories are strongly curved, the absorption cannot be
the maximum deviation anglg.x. According to quantum- described anymore by the ballistic model. The absorption is
mechanical considerationis,,,(v) is equal to the de Broglie then heavy since electrons are turning backwards. As shown

wavelength\g=%/mg V. in Fig. 1, where we have chosdn,,, according to this
For a bare Coulomb potential, the calculation of the col-Paper—see Eq(9)—this occurs for densities below 2.2
lision frequency generates a Coulomb logarithm In A: X 10**cm™*, and for a narrow electron velocity range below
2.2x10° ms L. For instance, fon;=5x10?2cm 3, it oc-
. 1 [1+b2 /b curs for velocities between about xd0®ms ! and
M(V):J "ot x/2) d(x/2)==In| — 2] 1P ms 1. The fact that some electrons are experiencing
Xmin 2\ 1+ bzmin/bf such deviations can be neglected to a first approximation for

(1) solid density plasmas.
Generally, for slow electron velocitiesv€0.1c), one
wherey is the deviation angle, related to the impact param-can neglect the termﬁqin/bf in Egs.(1) and(2). Usually the
eterb by tan(y/2)=b, /b. The physical “cutoff” is related cutoff parameteb,,. is approximated either by the Debye
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: dA oA
Az 809 B, Do DL (A_) E+VXB=— - VP=——=—(V-V)A-VO. (5)

L R

max

For moderate laser intensitie,€ 10Wcm™?), we use
the dipole approximatiopl1], that is to say, the convective
terms (- V) A and (- V) v are neglected in Eqg4) and
(5), or in other words, magnetic field effects are ignored. We
assume a linearly polarized field with a wave vedtgros-
cillation frequencyw, and the corresponding vector potential
A=Ay exp(—iwt+ik-r). The electron motion is dominated
by the quiver motion in the laser fieldi=vyexp(-iwt
+ik-r). Making these insertions, we obtain from E¢)

bl

max

eVh=kgT.V(Inny)+i w(eA—myv). (6)

FIG. 1. The impact parametels,,=\g, b, , andb, (in A)
and the Coulomb logarithv, vsv/c for nf'=5x10cm2and The plasma potential isb=®y+ 5D, with 5D = 5P;
nfPl=102 cm 2, andz=1. +6®,, where®d is the constant spatial background poten-

tial, 6®; the perturbation caused by the ion at the origin, and

length \p=vhe/wp e OF in the dielectric theory1] by A, od, the perturbation caused by the laser. Actually, the sec-
=v/wy e, Wherevy,, is the electron thermal velocitions ~ ond term in the right-hand side of E(G) equalse V 6P,
are treated here as immobile =i w(eA—myVv) and is of the order o, vV, wherevg;

Another limitation of the ballistic model arises for high is the electron-ion collision frequendy], which is negli-
density plasma where predominant electron-ion collisiongyible compared t@ V §®;=kgT, V(Inn), the first term in
are no longer binary: the lattice has to be taken into accounthe right hand side of Eq(6). For instance, forkgT,
since a test electron can interact with several ions simulta=100eV andn,=5x10?2cm™ 3 the typical scale length is
neously. Consequently, the, ., term appearing in Eq2) the Debye length A\p~3%x10"°m. Thus the force
has to be reduced to take into account the surrounding ion&gT, V(Inny)| is approximately 5% 10 ®N; and |m, ve; V|
[9,10]. In this paper we propose an improved cutoff,,for ~ <5X10 ®N, sincer,<10'*s"! for v<c/100. So, assum-
the formula(1). The idea is to compute the potential seen bying that the temperature is high enough, i®d®<kgT,,
the colliding electron with an ion placed at the origimglud- ~ we can write the Boltzmann distribution function ag
ing the ion lattice too. N =ng expe®/ksT)=ny+ N, where Sn=(nye/kgTe) 5P,
~ The relevant parameter describing th62 plzasma degeneragy the density perturbation with the equilibrium electron den-
isI'=1, /a, where the Landau lengih =Z"e“/4meokaTe ity "0 = 1y exped, /keTo). Thus Eq.(3) reduces tov25d
is the minimum approach distance between ions and 5@/)\%: —(Z eleg) 8(r)
= (5 mn;)~*? the radius of a sphere containing one ion; That the screening length is not influenced by the collec-
=ng/Z is the ion densityn, the background electron density tive electron oscillation can be explained by the fact that the
to be defined latefT the electron isothermal fluid tempera- oscillation of the electrons only slightly changes the local
ture, andkg the Boltzmann constant. In terms of the Debyeelectron density, which is perturbed mainly by the ion at the
length \p= Veo KsTe/Ng €2, the coupling parametdf can ~ Origin and by the screening caused by the collisional Max-

be written ad" = 1Z (a/\ )2, which reveals the importance wellian electrons. In fact, the linearly polarized laser field
of the ratioa/\p . causes only transverse perturbations since magnetic field ef-

In the case of nondegenerate plasmBs<(, i.e., a/\p fects are neglected; ions, in contrast, introduce three-
<1), the Debye-Hokel theory applies and the potential cre- dimensional perturbations.

ated by each ion is the Debye one. Fore ion the Debye The computations of the cutoff paramelgg,, have been
potential is obtained by solving the Poisson equation and theerformed for a body-centered-culiieco lattice. The ions
equation of motion for the electrons: are conS|der.ed fixed during the time when_ coII|S|o_ns are of
importance in femtosecond-laser—matter interaction. Actu-
goV2D(r,t)=—Zed(r)+en,, (3)  ally, ions are initially at a temperature of a few hundredths of
eV and during the short time electron-ion collisions are of

vn, importance, they do not reach a sufficient temperature for

- 4 appreciable hydrodynamic motion. As long as the lattice is
not totally disordered, ions quiver around their average posi-

We use in Eqgs(3) and (4) the following notation:®(r,t) tion, as in a solid lattice.

andn, are, respectively, the scalar potential and the electron The lattice parameter id=(4/y/3) a, since the minimum

density at the position and timet; §(r) is the Dirac distri- distance between two ions in the bcc lattice is one-half of the

bution function, implying that the ion is localized at the ori- cube diagonal. We choose the spherical coordinate system

gin; v is the electron velocity. (r,6,¢) shown in Fig. 2. Due to the symmetry of the bcc

SettingE=—-dA/dt—V®, whereA is the vector poten- lattice, it suffices to consider the range=0, 0<(6,¢)
tial used with the Coulomb gaug& (¢ A=0), we get </2.

av
mg H+(V~V)V

= —e(E+VXB)—kg T,

e
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exerted by an ion at positionr; on the colliding electron at 0 01 02 03 04 05 06 07 08 09 1
position r, can be written asfj=—eVoP(Ar;) where CL/)\D

oD (Ar;)=(Z el4 7 go) [exp(—Ar;/\p)/Arj] and Ar;=]r; _ o

_re”_ We compute the total forcE=(F,,F, Frf>) on the FIG. 4. Maximum, minimum, and average values of the cutoff

colliding electron by including all the ions at a distance less2max/ o VS @/Ap for a bec lattice. The top left inset shows the
than an arbitrarily chosen value of five Debye lengths, i.e.coulomb logarithm, vs v/c for the corresponding cutoffs:
FZEAr . fJ }\2 [Basd ? )\Z[AD]’ and )\2[)\01 (ni:102 cm_3, Z=1, kBTe: 100

/ jg NE

; . . . eV, anda/\p=0.5). The bottom right inset presents the ratio be-
The physical boundary of the possible interaction aregqen the cutoff and the ion-sphere rad{ts,)/a.
defining b, between the colliding electron and the ion at .
origin occurs when the radial forde, on the electron van-

ishes, i.e., when the electron effectively leaves the ion inter-

action cell.” Thus the condition 'F,=0" is chqsen as the ized cutoff b /Np for a/Ap=0.5 versus the direction
criterion to compute the cutot_ﬁmax. For numerical work it .. .anglesd and ¢. The minimum cutoff is obviously obtained
turns out to be more convenient t.o solve the problem WIthfor 0= ¢= /4. The lattice geometry creates other variations
the following equivalent condition: & |F,|/dr changes its on the surface: the local minima abE0) and (= /2

sign.” ;
- . 0=0 or 7/2) are due to the three closest body-centered ions
We present in Fig. @ the smoothedsmall numerical in the surrounding cells. Crests fop¢& /4, 6=0 or 7 /2)

irregularities have been suppressadrface of the normal- and (¢= /2, 6~ mld) are due to the three body-centered

ions on the diagonal. The three saddle regions between them
(a) are due to more distant ions of the neighboring cells. We also
want to point out the fact that the bcc ion lattice and the
associated Debye potential causes the force acting on the test
electron to vanish before the half-distance between two ions,
contrary to intuitive expectations, for particular directions of
the lattice: =0, ¢=mwl4), (0=ml2, p=ml4), (0= 7/4,
¢»=0) as demonstrated in Fig(l3. A similar phenomenon
occurs for fcc and sc lattices, in other special directions.
The relatively moderate variations=30%) in the cutoff
value suggest averaging over the angleand ¢. In Fig. 4
we show as a function @&/ \p the minimum, the maximum,
and the average valueb{/Ap)min, (Pmax/ \p)max, and
(b) (bmax/Np) e, respectively. Fom/\p much less than unity,
the cutoff is largely reduced from both the dynamical screen-
ing length\, and the static Debye lengtly .
(5): real cuteoff The Coulomb logarithm\,, Eq. (2), is presented in the
(i): cut-off intuitively expected top left inset of Fig. 4, as a function ef/c using in Eq.(2)
the three different cutoff parametdng,,, Ap, and\,. For
the plasma parameters we have chosen the valged 0?2
cm 3, kgT.=100 eV,Z=1. We notice that for velocities
less than 0.08, that is to say for laser intensities less than
FIG. 3. (8) Cutoff b,,,,/\p VS anglesd and & for a bee latice 3% 10'® Wem™2, the variation ofs, can exceed 25% from
and fora/\p=0.5; (b) d|F,|/dr vsr/\p showing an “anomaly”  the commonly used value based on the screening length.
in the particular directiord=0 and ¢=45°. In Fig. 5, we present some typical values(abh)yaxwel s

bmax / AD
0.70
0.60 |-
0.50
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(A2} Maxwell tron velocities with respect to the oscillatory electron motion
10 in the laser field. A good fit t@\ ) pmaxwen 1S given by

<)\2>M3XW9”%)\2(V]‘)1 Vi=\Ve+3/2 Vi (8)

where we use Eq2) for \,.

A/A«;If : In conclusion, we have devised a method which takes into
account in femtosecond-laser—matter interaction in a simple
way the effect of surrounding ions in electron-ion collision
frequency. For the cutofb,,, appearing in the Coulomb
logarithm, Eqs(1) and(2), instead of the Debye length, one
should use

5
B,

Solid lines: ni = 10%%cm=3
X Dashed lines:in; = 5ix 10?3 em=3
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FIG. 5. Coulomb logarithm(\ ) yaxwen @veraged over a Max-
wellian distribution function forn,=10%2cm~2 (solid lineg and  for a bcc lattice (A=4 a/+/3) according to the bottom right
n;=5x10%cm™3 (dashed linesfor three electron temperatures inset in Fig. 4. The modification is obviously particularly
30eV, 500 eV, and 5 keV. The points represent the exact computamportant for smalla/Ap values.
tions, Eq.(7), and the lines the fit formula, E¢8). The computation above has been performed for a bcc lat-

tice but can be easily generalized for any type of lattice. The

the average over a Maxwellian distribution function)of,  numerical value in the previous equation changes somewhat
for different densities and isotropic electron temperatures: without affecting the essential dependeribg,,,) = a a. For

a0 ) a sc lattice 4=2a), we propose(b»~1.211a with a
) [ Me f“@f“ ex ~MeVy <\p, and for a fcc lattice A=4a/\/2), (bmay~1.107a
2/ Maxwell 2 a kBTe 0 — o0 2 kBTe

with a<Ap.
) The rather moderate influence of the lattice type onche
ex —MeV| [ VZF (Vv coefficient shows that even when the lattice deformation
2kgTe ) "2tV I Yo starts, due to individual motion of heated ions, the relevant
parameter is still the ion-sphere radias
X2mv, dvj dv,, (7)
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