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Coulomb logarithm in femtosecond-laser–matter interaction
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In femtosecond-laser–matter interaction, collisional absorption plays an important role during the early
stages of the interaction, when the laser intensity and the plasma temperature still have moderate values. We
propose a cutoff impact parameterbmax for the Coulomb logarithml5 ln L in the electron-ion collision rate
which takes into account, for an overdense plasma, the crystalline structure of the ion background. Calculations
are presented for a bcc lattice and generalized to sc and fcc lattices. The results are applicable for laser
intensitiesI l<1017 W cm22 and when the Debye theory is valid, that is to say, when the Landau length is
distinctly less than the minimum ion distance, and when the Debye screening is unaffected by the electron
quiver motion in the laser field. We present the space angle dependence of the cutoffbmax as also its spatial
average, and we discuss the ensuing corrections to the Coulomb logarithm due to the improved values ofbmax.
Finally, we present the pertinent^l& values, averaged over a Maxwellian distribution function, which are
needed for applications of the ballistic model for collisions.@S1063-651X~99!05108-9#

PACS number~s!: 52.40.Nk, 52.20.Fs, 52.20.2j
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When an intense femtosecond laser pulse impinges s
matter, collisional absorption in the generated overde
plasma (vp e.v, wherev is the laser frequency andvp e
the plasma frequency! plays an important role during th
early stages of the interaction, i.e., as long as the local l
intensityI l and the electron temperaturekBTe still have mod-
erate values. For a laser wavelengthl l50.815mm, intensity
I l<1017W cm22, electron temperaturekBTe<300 eV, and
density ne'531023cm23, the electron-ion collision fre-
quency is of the order of 1013s21.

The most complete theory describing electron-ion inter
tion in solid matter is the dielectric model~see, for instance
@1–3#!. For practical purposes, it has, however, appea
more convenient to use simpler models based on the ball
collision theory. This approach has been recently revisited
Mulser et al. @4#, who provide for laser-matter interaction
time-dependent collision frequency, which in fact represe
the collisional energy absorption rate.

In the following, we denote by b'(v)
5Z e2/4p «0 me v2 the impact parameter corresponding to
90° deflection, wherev is the colliding electron velocity,Z
the ion charge number,«0 the vacuum permittivity,e the
elementary electric charge, andme the electron mass. Th
cutoff bmax is the maximum interaction distance correspon
ing to the minimum meaningful deviation anglexmin , and
bmin(v) the minimum interaction distance corresponding
the maximum deviation anglexmax. According to quantum-
mechanical considerations,bmin(v) is equal to the de Broglie
wavelengthlB5\/me v.

For a bare Coulomb potential, the calculation of the c
lision frequency generates a Coulomb logarithml5 ln L:

l1~v !5E
xmin

xmax
cot~x/2! d ~x/2!5

1

2
lnS 11bmax

2 /b'
2

11bmin
2 /b'

2 D ,

~1!

wherex is the deviation angle, related to the impact para
eterb by tan(x/2)5b' /b. The physical ‘‘cutoff’’ is related
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to bmax only; the termb' enters into Eq.~1! in order to
simplify notation. The bare Coulomb potential approxim
tion is valid here since we investigate impact paramet
shorter than or close to the Debye length. Some more pre
formulas are given in@5# to take into account the Deby
screening, but for one ion only—not for an ion lattice.

The rough formula, Eq.~1!, could be replaced by a mor
detailed one,

l2~v !5
1

2
lnS 11bmax

2 /b'
2

11bmin
2 /b'

2 D
1

1

2 S 1

11bmax
2 /b'

2
2

1

11bmin
2 /b'

2 D , ~2!

which takes into account the energy conservation of the e
tron colliding elastically with a much heavier fixed ion@6#.

One can also find in the literature~see, e.g.,@7,8#! another
approximate formula forl5 lnL5ln(bmax/b0), where b0
5max(lB , b'). This can be derived from Eq.~1! in the limit
bmax@b' : if lB.b' , we get l1(v)' ln(bmax/lB); if lB
,b' , we getl1(v)' ln(bmax/b').

When bmax is less thanbmin , there is no interaction and
the collision frequency vanishes. Forbmax,b' , meaning
that trajectories are strongly curved, the absorption canno
described anymore by the ballistic model. The absorption
then heavy since electrons are turning backwards. As sh
in Fig. 1, where we have chosenbmax according to this
paper—see Eq.~9!—this occurs for densities below 2.
31024cm23, and for a narrow electron velocity range belo
2.23106 m s21. For instance, forni5531022cm23, it oc-
curs for velocities between about 63105 m s21 and
106 m s21. The fact that some electrons are experienc
such deviations can be neglected to a first approximation
solid density plasmas.

Generally, for slow electron velocities (v,0.1c), one
can neglect the termbmin

2 /b'
2 in Eqs.~1! and~2!. Usually the

cutoff parameterbmax is approximated either by the Deby
2260 © 1999 The American Physical Society
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length lD5v th e /vp e or in the dielectric theory@1# by lo
5v/vp e , wherev th e is the electron thermal velocity~ions
are treated here as immobile!.

Another limitation of the ballistic model arises for hig
density plasma where predominant electron-ion collisio
are no longer binary: the lattice has to be taken into acco
since a test electron can interact with several ions simu
neously. Consequently, thebmax term appearing in Eq.~2!
has to be reduced to take into account the surrounding
@9,10#. In this paper we propose an improved cutoffbmax for
the formula~1!. The idea is to compute the potential seen
the colliding electron with an ion placed at the origin,includ-
ing the ion lattice, too.

The relevant parameter describing the plasma degene
is G5 l L /a, where the Landau lengthl L5Z2 e2/4p «0 kBTe
is the minimum approach distance between ions anda

5( 4
3 p ni)

21/3 the radius of a sphere containing one ion;ni

5n0̄/Z is the ion density,n0̄ the background electron densi
to be defined later,Te the electron isothermal fluid tempera
ture, andkB the Boltzmann constant. In terms of the Deb

length lD5A«0 kBTe /n0̄ e2, the coupling parameterG can
be written asG5 1

3 Z (a/lD)2, which reveals the importanc
of the ratioa/lD .

In the case of nondegenerate plasmas (G,1, i.e., a/lD
,1), the Debye-Hu¨ckel theory applies and the potential cr
ated by each ion is the Debye one. Forone ion, the Debye
potential is obtained by solving the Poisson equation and
equation of motion for the electrons:

«0“
2 F~r ,t !52Zed~r !1ene , ~3!

me F] v

] t
1~v•“ ! vG52e~E1v3B!2kB Te

“ne

ne
. ~4!

We use in Eqs.~3! and ~4! the following notation:F(r ,t)
andne are, respectively, the scalar potential and the elec
density at the positionr and timet; d(r ) is the Dirac distri-
bution function, implying that the ion is localized at the o
gin; v is the electron velocity.

SettingE52] A/] t2“F, whereA is the vector poten-
tial used with the Coulomb gauge (“•A50), we get

FIG. 1. The impact parametersbmin5lB , b' , andbmax ~in Å!
and the Coulomb logarithml2 vs v/c for ni

[1]5531023 cm23 and
ni

[2]51022 cm23, andZ51.
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E1v3B52
d A

d t
2“F52

] A

] t
2~v•“ ! A2“F. ~5!

For moderate laser intensities (I l< 1017W cm22), we use
the dipole approximation@11#, that is to say, the convectiv
terms (v•“) A and (v•“) v are neglected in Eqs.~4! and
~5!, or in other words, magnetic field effects are ignored. W
assume a linearly polarized field with a wave vectork, os-
cillation frequencyv, and the corresponding vector potenti
A5A0 exp(2i v t1i k•r ). The electron motion is dominate
by the quiver motion in the laser field:v5v0 exp(2i v t
1i k•r ). Making these insertions, we obtain from Eq.~4!

e“F5kBTe“~ ln ne!1 i v ~e A2me v!. ~6!

The plasma potential isF5F01dF, with dF5dF i
1dF l , whereF0 is the constant spatial background pote
tial, dF i the perturbation caused by the ion at the origin, a
dF l the perturbation caused by the laser. Actually, the s
ond term in the right-hand side of Eq.~6! equalse“dF l
5 i v (e A2me v) and is of the order ofme nei v, wherenei
is the electron-ion collision frequency@4#, which is negli-
gible compared toe“dF i5kBTe“(ln ne), the first term in
the right hand side of Eq.~6!. For instance, forkBTe
5100 eV andne5531022cm23 the typical scale length is
the Debye length lD'3310210m. Thus the force
ukBTe“(ln ne)u is approximately 531026 N; and ume nei vu
!531026 N, sincenei<1016s21 for v,c/100. So, assum-
ing that the temperature is high enough, i.e.,e dF!kBTe ,
we can write the Boltzmann distribution function asne

5n0 exp(eF/kBTe)5n0̄1dne where dne5(n0̄ e/kBTe) dF,
is the density perturbation with the equilibrium electron de
sity n0̄5n0 exp(eF0 /kBTe). Thus Eq.~3! reduces to¹2dF
2dF/lD

2 52(Z e/«0) d(r ).
That the screening length is not influenced by the coll

tive electron oscillation can be explained by the fact that
oscillation of the electrons only slightly changes the loc
electron density, which is perturbed mainly by the ion at t
origin and by the screening caused by the collisional M
wellian electrons. In fact, the linearly polarized laser fie
causes only transverse perturbations since magnetic field
fects are neglected; ions, in contrast, introduce thr
dimensional perturbations.

The computations of the cutoff parameterbmax have been
performed for a body-centered-cubic~bcc! lattice. The ions
are considered fixed during the time when collisions are
importance in femtosecond-laser–matter interaction. Ac
ally, ions are initially at a temperature of a few hundredths
eV and during the short time electron-ion collisions are
importance, they do not reach a sufficient temperature
appreciable hydrodynamic motion. As long as the lattice
not totally disordered, ions quiver around their average po
tion, as in a solid lattice.

The lattice parameter isA5(4/A3) a, since the minimum
distance between two ions in the bcc lattice is one-half of
cube diagonal. We choose the spherical coordinate sys
(r ,u,f) shown in Fig. 2. Due to the symmetry of the bc
lattice, it suffices to consider the ranger>0, 0<(u,f)
<p/2.
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Normalizing all the lengths to the Debye length, the for
exerted by an ionj at positionr j on the colliding electron a
position re can be written asfj52e“dF(Dr j ) where
dF(Dr j )5(Z e/4p «0) @exp(2Dr j /lD)/Dr j# and Dr j5ir j
2rei . We compute the total forceF5(Fr ,Fu ,Ff) on the
colliding electron by including all the ions at a distance le
than an arbitrarily chosen value of five Debye lengths, i
F5(Dr j<5lD

fj.
The physical boundary of the possible interaction a

defining bmax between the colliding electron and the ion
origin occurs when the radial forceFr on the electron van-
ishes, i.e., when the electron effectively leaves the ion in
action ‘‘cell.’’ Thus the condition ‘‘Fr50’’ is chosen as the
criterion to compute the cutoffbmax. For numerical work it
turns out to be more convenient to solve the problem w
the following equivalent condition: ‘‘] uFr u/] r changes its
sign.’’

We present in Fig. 3~a! the smoothed~small numerical
irregularities have been suppressed! surface of the normal-

FIG. 2. Definition of the coordinate system for a bcc lattice.

FIG. 3. ~a! Cutoff bmax/lD vs anglesu andf for a bcc lattice
and fora/lD50.5; ~b! ] uFr u/] r vs r /lD showing an ‘‘anomaly’’
in the particular directionu50 andf545°.
s
.,

a

r-

h

ized cutoff bmax/lD for a/lD50.5 versus the direction
anglesu andf. The minimum cutoff is obviously obtained
for u5f5p/4. The lattice geometry creates other variatio
on the surface: the local minima at (f50) and (f5p/2,
u50 or p/2) are due to the three closest body-centered i
in the surrounding cells. Crests for (f'p/4, u50 or p /2)
and (f5p/2,u'p/4) are due to the three body-center
ions on the diagonal. The three saddle regions between t
are due to more distant ions of the neighboring cells. We a
want to point out the fact that the bcc ion lattice and t
associated Debye potential causes the force acting on the
electron to vanish before the half-distance between two io
contrary to intuitive expectations, for particular directions
the lattice: (u50, f5p/4), (u5p/2, f5p/4), (u5p/4,
f50) as demonstrated in Fig. 3~b!. A similar phenomenon
occurs for fcc and sc lattices, in other special directions.

The relatively moderate variations ('30%) in the cutoff
value suggest averaging over the anglesu andf. In Fig. 4
we show as a function ofa/lD the minimum, the maximum
and the average value (bmax/lD)min , (bmax/lD)max, and
^bmax/lD&uf̄ , respectively. Fora/lD much less than unity,
the cutoff is largely reduced from both the dynamical scre
ing lengthlo and the static Debye lengthlD .

The Coulomb logarithml2, Eq. ~2!, is presented in the
top left inset of Fig. 4, as a function ofv/c using in Eq.~2!
the three different cutoff parametersbmax, lD , andlo . For
the plasma parameters we have chosen the valuesn0̄51022

cm23, kBTe5100 eV, Z51. We notice that for velocities
less than 0.03c, that is to say for laser intensities less th
331016 W cm22, the variation ofl2 can exceed 25% from
the commonly used value based on the screening length

In Fig. 5, we present some typical values of^l2&Maxwell ,

FIG. 4. Maximum, minimum, and average values of the cut
bmax/lD vs a/lD for a bcc lattice. The top left inset shows th
Coulomb logarithm l2 vs v/c for the corresponding cutoffs
l2 [bmax]

, l2 [lD] , and l2 [lo] (ni51022 cm23, Z51, kBTe5100
eV, anda/lD50.5). The bottom right inset presents the ratio b
tween the cutoff and the ion-sphere radius^bmax&/a.
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the average over a Maxwellian distribution function ofl2,
for different densities and isotropic electron temperatures

^l2&Maxwell5S me

2 p kBTe
D 3/2E

0

1`E
2`

1`

expS 2me v'
2

2 kBTe
D

3expS 2me v i
2

2 kBTe
D l2@Av'

2 1~v i1vo!2#

32 p v' d v i d v' , ~7!

wherevo is the electron quiver velocity;v' andv i are, re-
spectively, the perpendicular and the parallel individual el

FIG. 5. Coulomb logarithm̂ l2&Maxwell averaged over a Max
wellian distribution function forni51022 cm23 ~solid lines! and
ni5531023 cm23 ~dashed lines! for three electron temperature
30 eV, 500 eV, and 5 keV. The points represent the exact comp
tions, Eq.~7!, and the lines the fit formula, Eq.~8!.
s

I
t-
a

-

tron velocities with respect to the oscillatory electron moti
in the laser field. A good fit tôl2&Maxwell is given by

^l2&Maxwell'l2~v f !, v f5Avo
213/2 v th e

2 , ~8!

where we use Eq.~2! for l2.
In conclusion, we have devised a method which takes i

account in femtosecond-laser–matter interaction in a sim
way the effect of surrounding ions in electron-ion collisio
frequency. For the cutoffbmax appearing in the Coulomb
logarithm, Eqs.~1! and~2!, instead of the Debye length, on
should use

^bmax&'1.107a, a,lD ~9!

for a bcc lattice (A54 a/A3) according to the bottom righ
inset in Fig. 4. The modification is obviously particular
important for smalla/lD values.

The computation above has been performed for a bcc
tice but can be easily generalized for any type of lattice. T
numerical value in the previous equation changes somew
without affecting the essential dependence^bmax&5a a. For
a sc lattice (A52 a), we proposê bmax&'1.211a with a
,lD , and for a fcc lattice (A54 a/A2), ^bmax&'1.107a
with a,lD .

The rather moderate influence of the lattice type on thea
coefficient shows that even when the lattice deformat
starts, due to individual motion of heated ions, the relev
parameter is still the ion-sphere radiusa.
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